Tree Based Methods (Ensemble Schemes)

Machine Learning Spring 2018 Feb 26 2018 Kasthuri Kannan kasthuri.kannan@nyumc.org

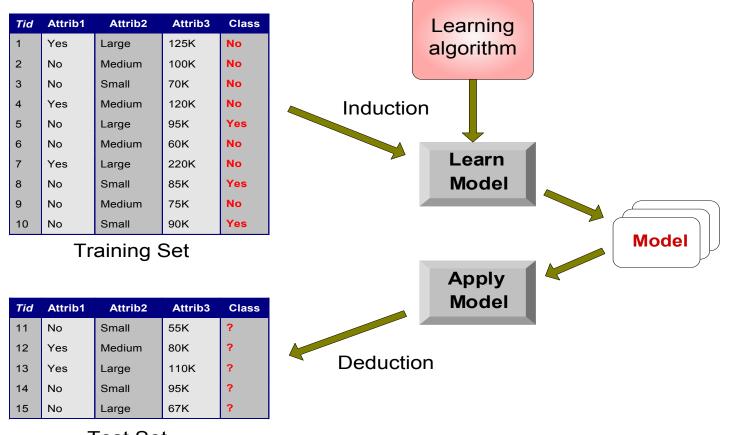
Overview

- Decision Trees
 - Overview
 - Splitting nodes
 - Limitations
- Bagging/Bootstrap Aggregating and Boosting
 - How bagging reduces variance?
 - Boosting
- Random Forests
 - Overview
 - Why RF works?
- Cancer Genomics Application

Classification

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class/label
- Find a model for class attribute as a function of the values of other attributes.
- Goal: previously unseen records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

Classification Illustration



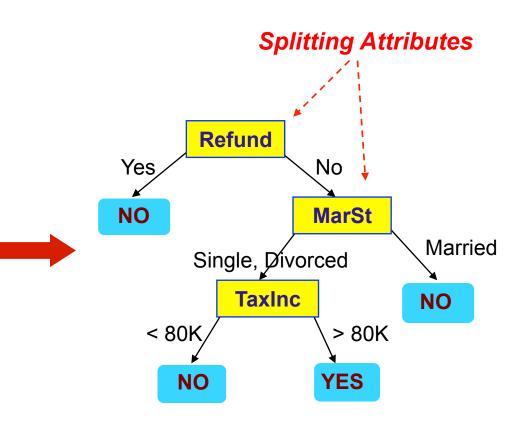
Test Set

Courtesy: www.cs.kent.edu/~jin/DM07/

Classification Examples

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil
- Categorizing news stories as finance, weather, entertainment, sports, etc.
- Several algorithms Decision trees, Support Vector Machines, Rule-based Methods etc.

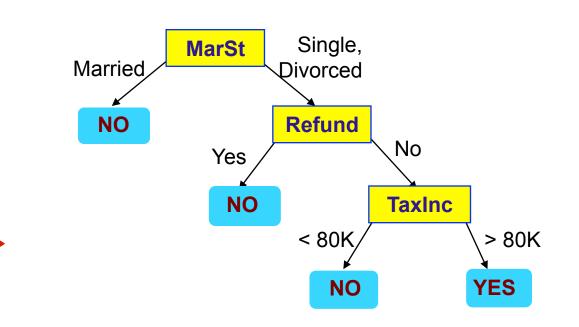
Decision Tree (Example)



Model: Decision Tree

Training Data

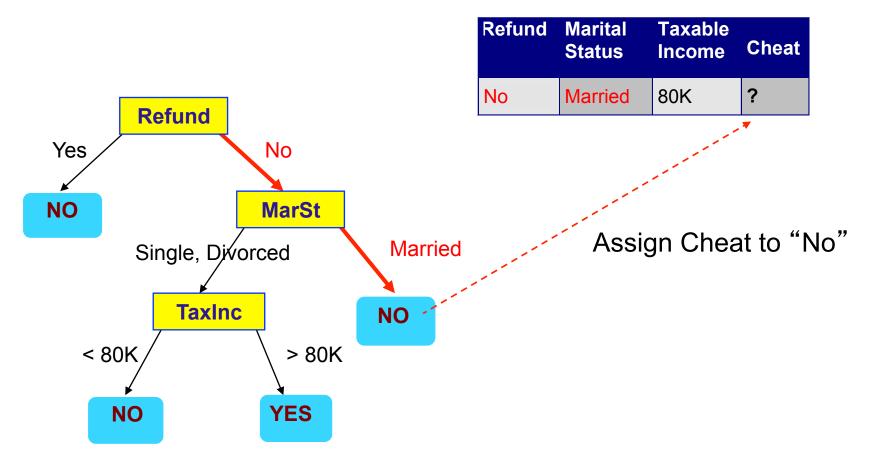
Decision Tree (Another Example)



There could be more than one tree that fits the same data!

Applying the model

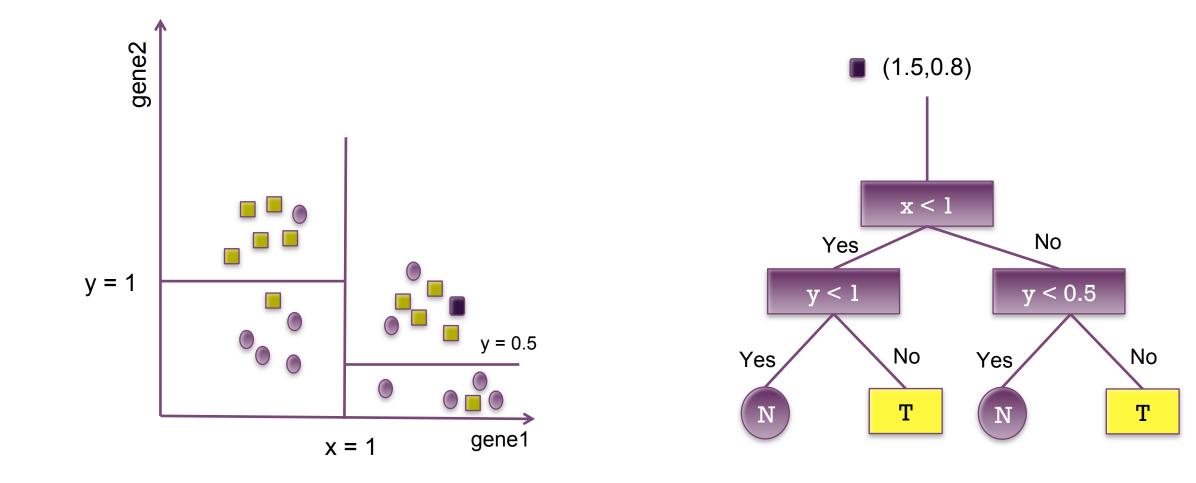
Once the decision tree is built, the model can be used to test an unclassified data



Test Data

Tumor Classification (Example)

- Tumor samples/patients given by expression in (gene1,gene2)
- Normal samples/patients given by expression in (gene1,gene2)



Decision Tree Algorithms

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

Hunt's Algorithm (General Idea)

Let D_t be the set of training records that reach a node t

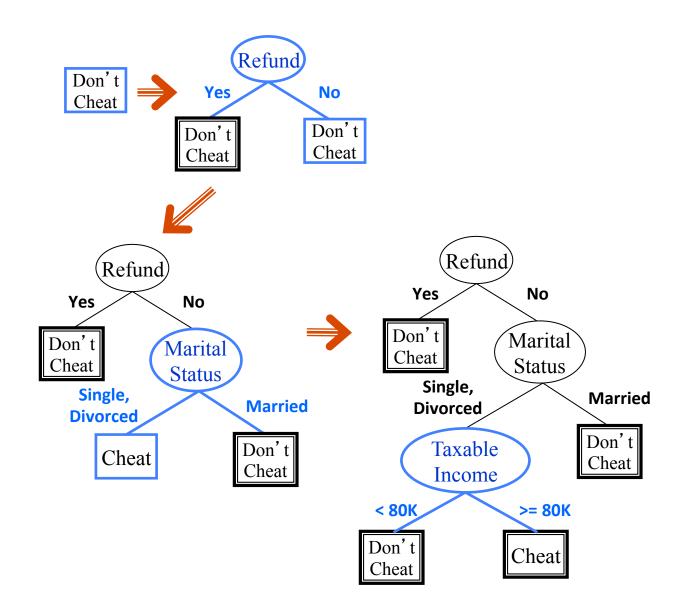
General Procedure:

If D_t contains records that belong the same class y_t , then t is a leaf node labeled as y_t

If D_t is an empty set, then t is a leaf node labeled by the default class, y_d

If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Hunt's Algorithm (Illustration)



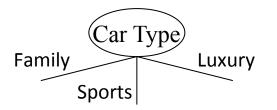
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

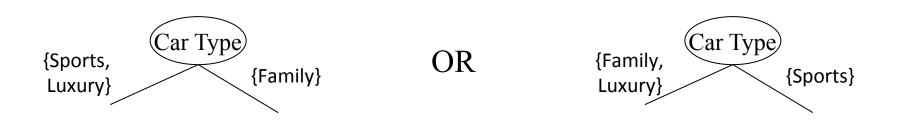
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Main questions
 - Determine how to split the records
 - Binary or multi-way split?
 - How to determine the best split?
 - Determine when to stop splitting

Test Condition (Splitting Based on Nominal/Ordinal Attributes)

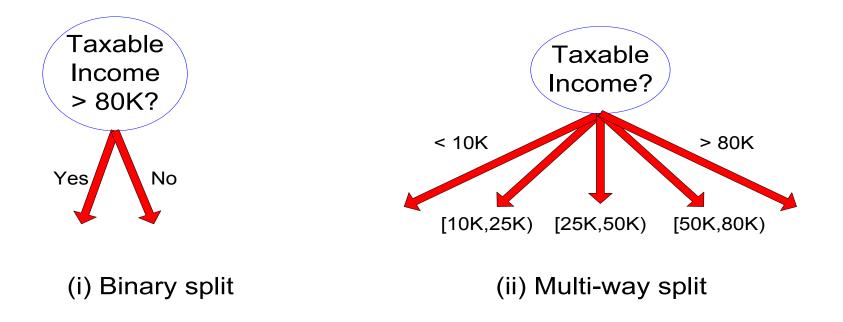
Multi-way split: Use as many partitions as distinct values.



Binary split: Divides values into two subsets. Need to find optimal partitioning.



Test Condition (Splitting Based on Continuous Attributes)



Binary vs. Multi-way split – which is the best?

Seven-class, 4-feature classification problem **Apple** = (green AND medium) OR (red AND medium) = (Medium AND NOT yellow)

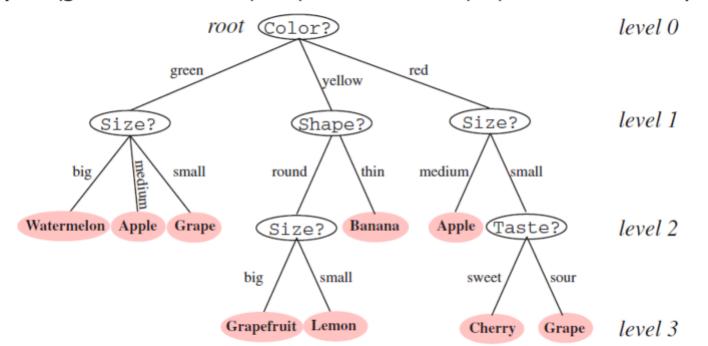


Figure 8.1: Classification in a basic decision tree proceeds from top to bottom. The questions asked at each node concern a particular property of the pattern, and the downward links correspond to the possible values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read. Note that the same question, Size?, appears in different places in the tree, and that different questions can have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the same category (e.g., Apple).

Binary vs. Multi-way split – which is the best?

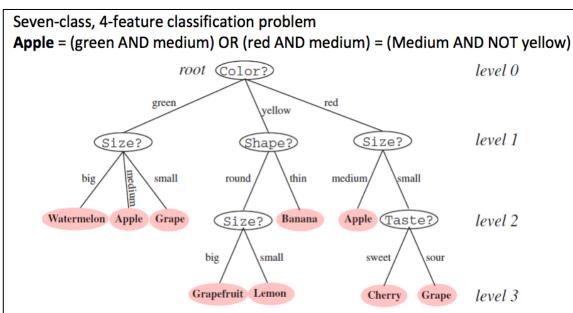


Figure 8.1: Classification in a basic decision tree proceeds from top to bottom. The questions asked at each node concern a particular property of the pattern, and the downward links correspond to the possible values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read. Note that the same question, Size?, appears in different places in the tree, and that different questions can have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the same category (e.g., Apple).

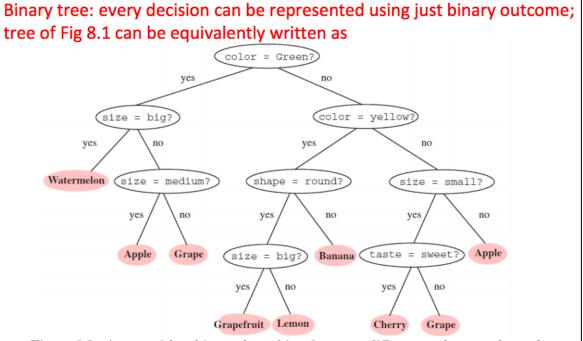
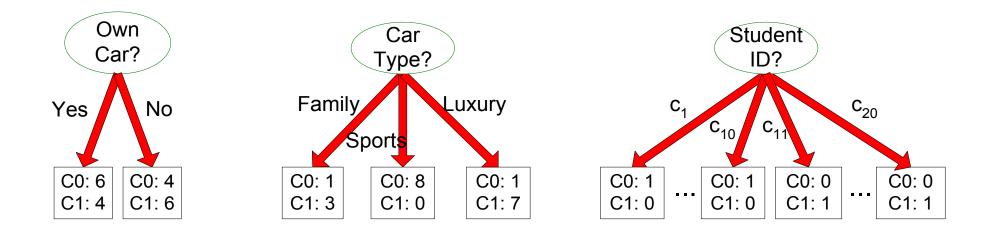


Figure 8.2: A tree with arbitrary branching factor at different nodes can always be represented by a functionally equivalent binary tree, i.e., one having branching factor B = 2 throughout. By convention the "yes" branch is on the left, the "no" branch on the right. This binary tree contains the same information and implements the same classification as that in Fig. 8.1.

Determining Best Split

Before Splitting: 10 records of class 0, 10 records of class 1



Which attribute is the best for splitting?

Determining Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Measures of Node Impurity

• Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

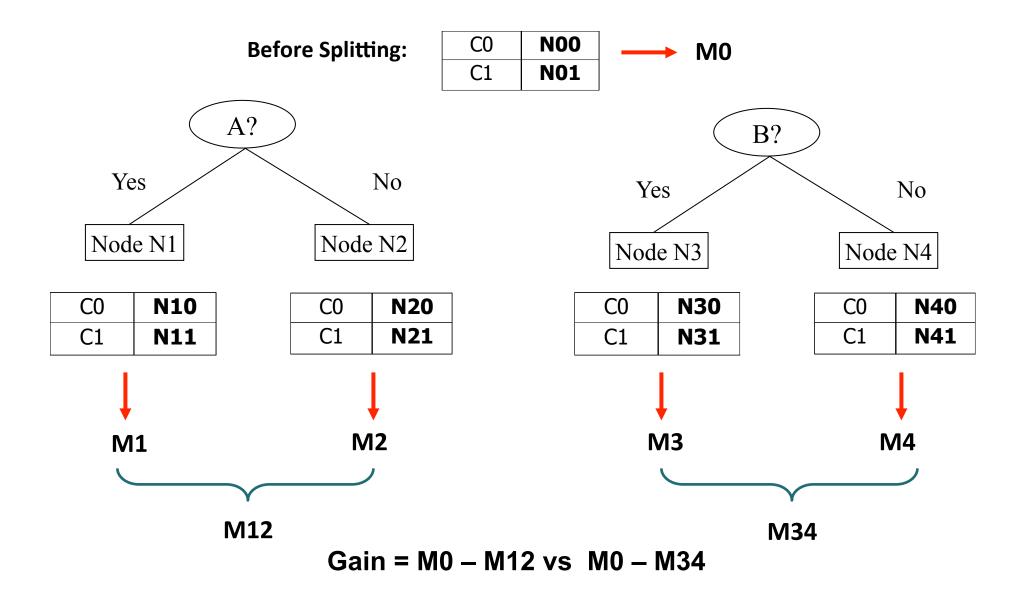
• Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

• Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Computing Measures of Node Impurity



Computing Measures of Node Impurity (Gini Index)

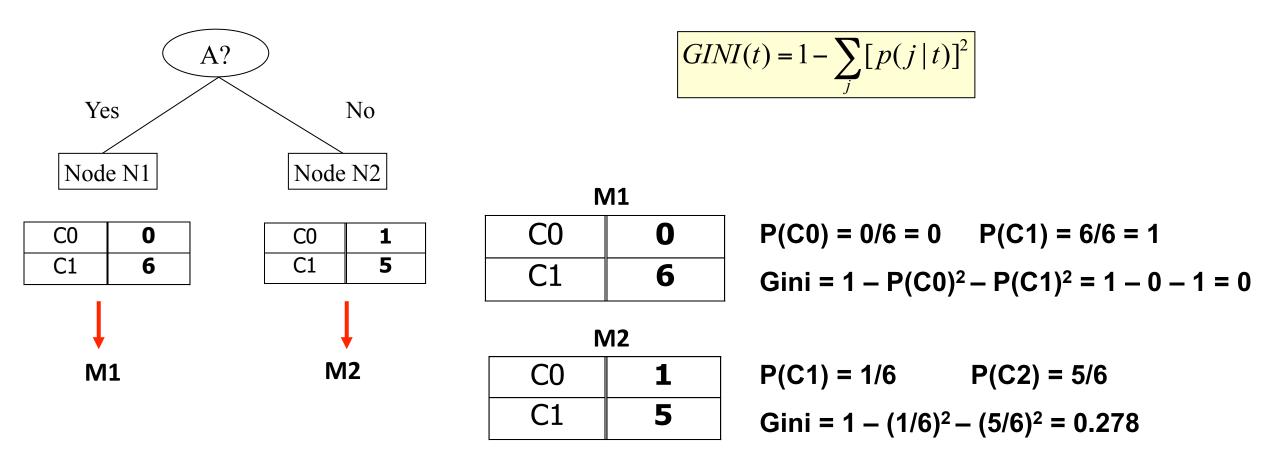
• Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^2$$

(NOTE: p(j | t) is the relative frequency of class j at node t)

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Example (Gini Index of a Node)



Splitting based on Gini Index

- Used in CART, SLIQ, SPRINT
- When a node p is split into k partitions (children), the quality of split is computed as,

$$Gini_{split} = Gini(Parent) - \frac{n_L}{n_{parent}}Gini(Left) - \frac{n_R}{n_{parent}}Gini(Right)$$

where, n_L = number of records at the left child node, n_R = number of records at the right child node

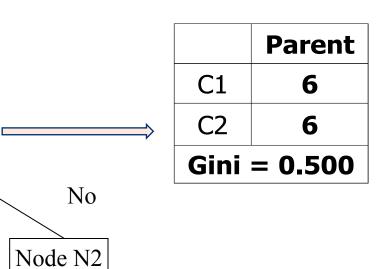
• Split on the attribute that maximizes *Gini*_{split}

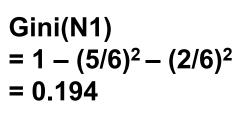
Splitting Based on Gini Index

• Splits into two partitions

$$Gini_{split} = Gini(Parent) - \frac{n_L}{n_{parent}}Gini(Left) - \frac{n_R}{n_{parent}}Gini(Right)$$

- Effect of Weighing partitions:
 - Larger and purer partitions are sought for.





Gini(N2) = 1 - (1/6)² - (4/6)² = 0.528



Yes

Node N1

Gini(Children) = 7/12 * 0.194 + 5/12 * 0.528 = 0.333

B?

 $Gini_{split(B)} = 0.5 - 0.3 = 0.2$

Measures of Node Impurity (Entropy)

• Entropy at a given node t:

 $Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$

- (NOTE: p(j | t) is the relative frequency of class j at node t).
- Measures homogeneity of a node.
 - Maximum (log n_c) when records are equally distributed among all classes implying least information
 - Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are similar to the GINI index computations

Example (Entropy)

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = - 0 log 0 - 1 log 1 = - 0 - 0 = 0

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = - (1/6) $\log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Entropy = - (2/6) $\log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Splitting Based on Entropy: Information Gain

• Information Gain:

 $GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$

Parent Node, p is split into k partitions; n_i is number of records in partition I

- Measures reduction in entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
 - Used in ID3 and C4.5
 - Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Measures of Node Impurity (Misclassification Error)

• Classification error at a node t :

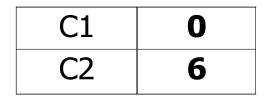
 $Error(t) = 1 - \max_{i} P(i \mid t)$

- Measures misclassification error made by a node.
 - Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information
- Misclassification based computations are similar to the GINI index and entropy computations

$$MC_{split} = MC(Parent) - \frac{n_L}{n_{parent}}MC(Left) - \frac{n_R}{n_{parent}}MC(Right)$$

Example (Misclassification Error)

$$Error(t) = 1 - \max_{i} P(i \mid t)$$



$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Error = 1 - max (0, 1) = 1 - 1 = 0

C1	1	P(C1) =
C2	5	Error =

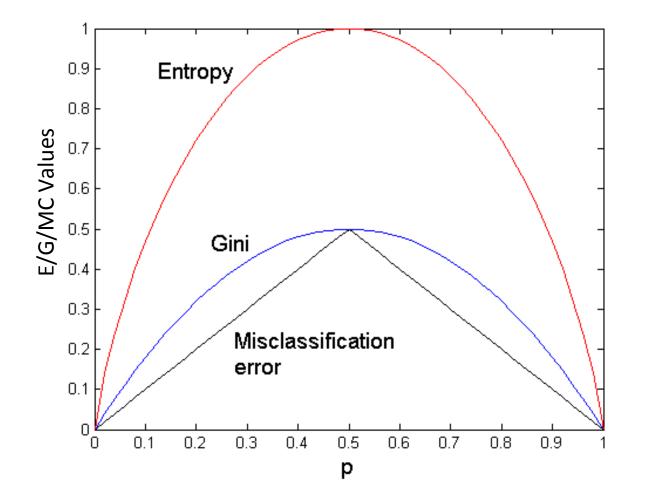
$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

C1	2	
C2	4	

P(C1) = 2/6 P(C2) = 4/6Error = $1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$

Comparison (Splitting Criteria)

Two-class problem



Summary

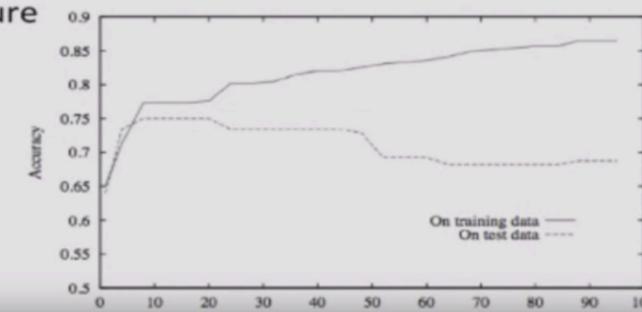
- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Questions
 - Determine how to split the records
 - Binary or multi-way split? Multi-way is same as binary split.
 - How to determine the best splitting features? Gini/Entropy/Misclassification
 - When to stop splitting?

When to stop splitting?

- A maximal node depth is reached
 - If splitting is stopped too early, error on training data is not sufficiently low and performance on the test data will suffer (underfitting)
- The leaf nodes doesn't have any impurity
 - If we continue to grow the tree fully until each leaf node corresponds to the lowest impurity, then the data have typically been overfit; in the limit, each leaf node has only one pattern!

Overfitting in Decision Trees

- Can always classify training examples perfectly
 - keep splitting until each node contains 1 example
 - singleton = pure
- Doesn't work on new data



of nodes

Tom Mitchell, 1997

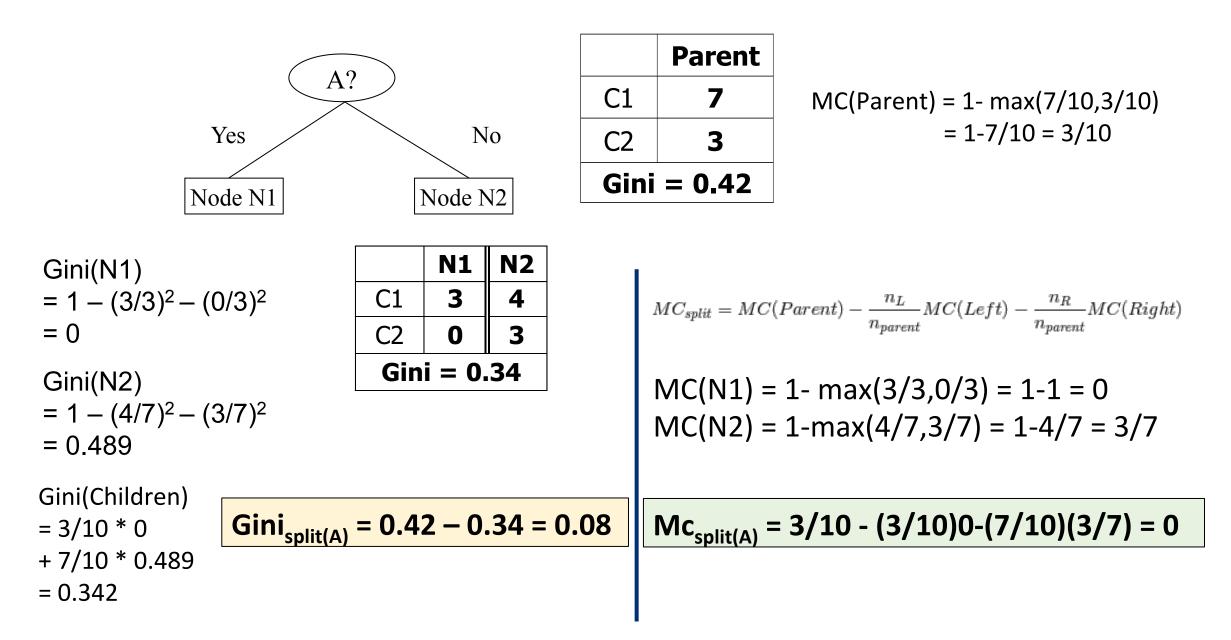
When to stop splitting?

 Stop splitting when the best candidate split at a node reduces the impurity by less than the preset amount (threshold)

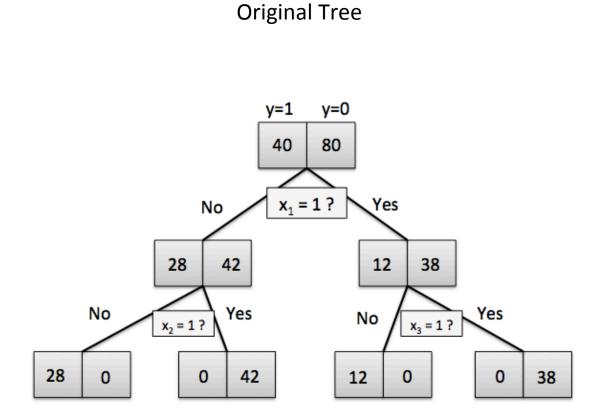
• How to set the threshold?

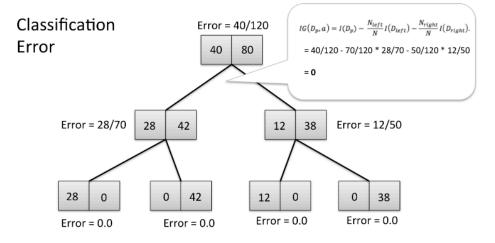
- Splitting a note does not lead to an information gain
 - Depends on the metric used for information gain

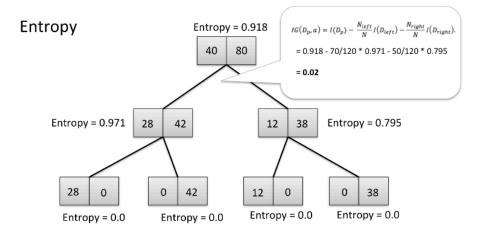
Comparison (Gini Vs. Misclassification)



Comparison (Entropy Vs. Misclassification)







Advantages & Disadvantages

- Inexpensive to construct if classifying features are given or known
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets
- Underfitting and Overfitting
- Costs of classification high as tree construction is combinatorial in features
- Sensitive to data high variance less accurate prediction

When to stop splitting?

- Use validation/cross-validation techniques
 - Continue splitting until error on validation set is minimum
 - Cross-validation relies on several independently chosen subsets
- Cross-validation methods
 - Hold-out method (50-70 % Training, 50-30 % testing/validation)
 - Prone to selection bias
 - K-fold cross-validation
 - Leave one out cross-validation (lots of computation time)
 - Bootstrap methods

Bootstrap Aggregation

- Key variance reduction technique
- If each classifier has a high variance the aggregated classifier has a smaller variance than each single classifier

• The bagging classifier is like an approximation of the true average computed by replacing the probability distribution with bootstrap approximation

Small change in the data could result in a radically different tree structure

Large variance in classification

Variance reduces by aggregating/averaging

Why Bagging Works?

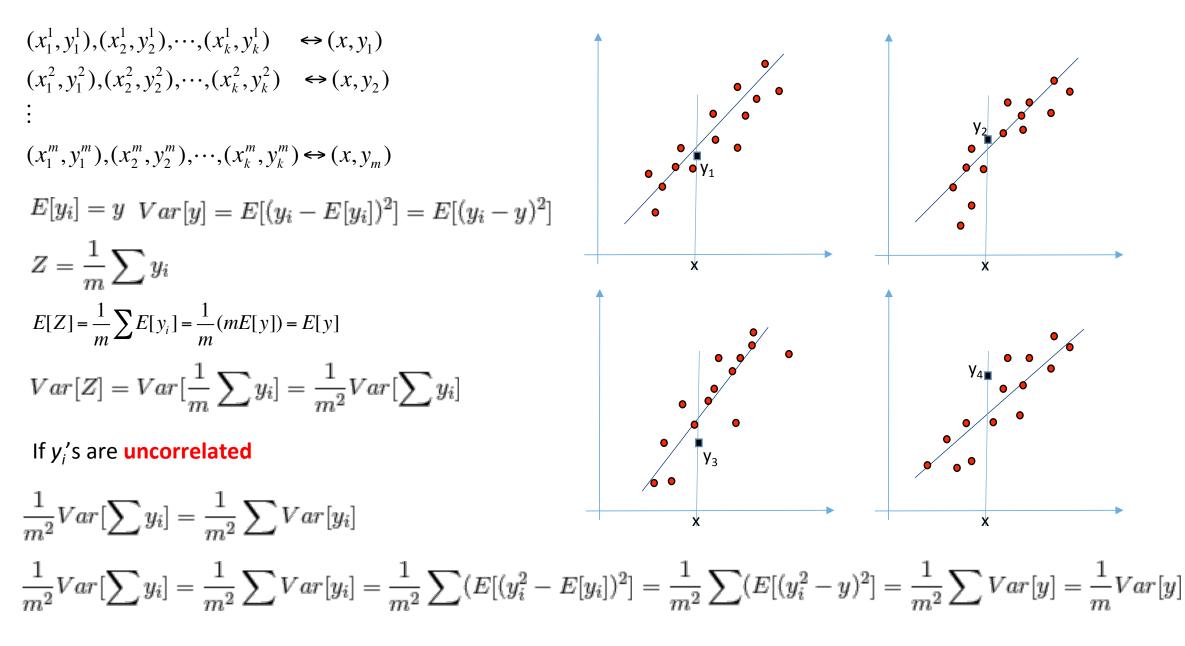
• Variance of a random variable, Z

$$Var(Z) = E[(Z - E[Z])^{2}]$$

= $E[Z^{2} - 2ZE[Z] + E[Z]^{2}]$
= $E[Z^{2}] - E[Z]^{2}$

• Properties of Var(Z) $Var(aZ) = E[a^2Z^2] - E[aZ]^2 = a^2Var(Z)$

Why Bagging Works?



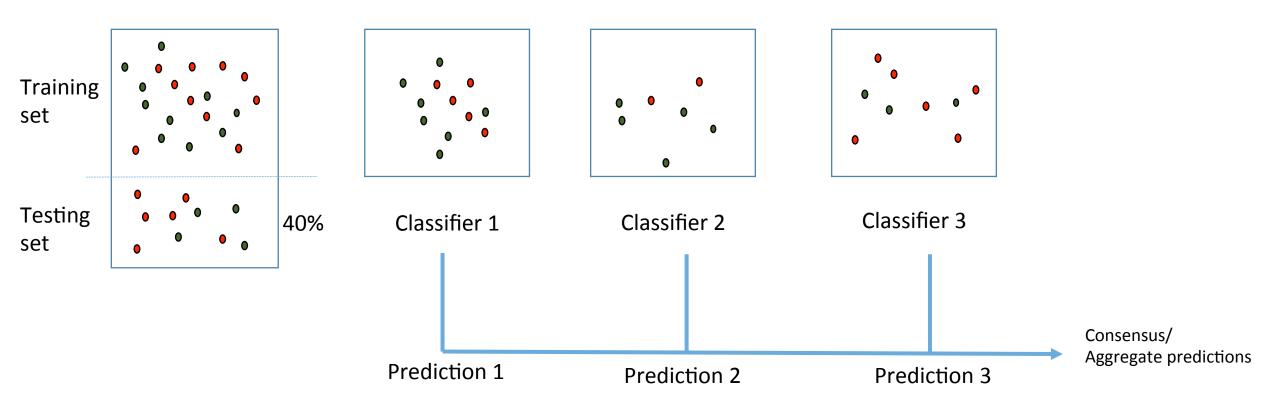
Why bagging works?

$$E[Z] = E[y] = y$$
$$Var[Z] = \frac{1}{m}Var[y]$$

- As m increases, variance is reduced and the aggregated prediction is closer to the true value.
- Unfortunately, we DON'T have several sets of samples!!!
- What should we do?
- Of course, make a uniform sampling from given sample set, with replacement and use each sample set as a bootstrap sample set!!!

Ensemble Classifiers

- Subsample with replacement
- Uniformly subsample



Bagging (Error Curves)

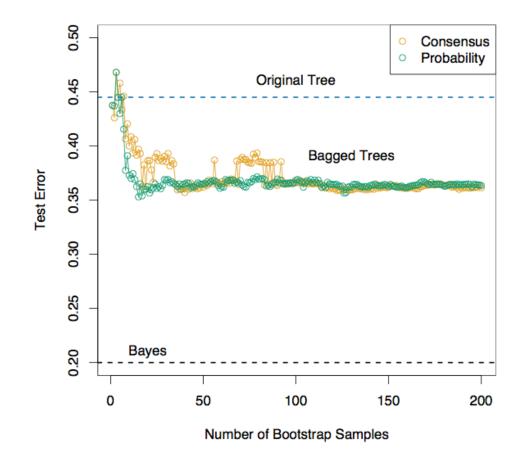


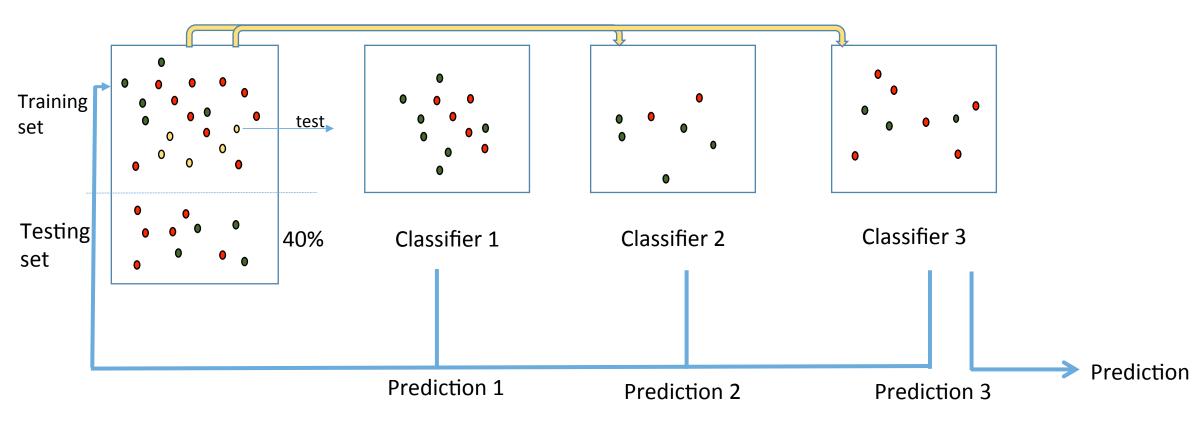
FIGURE 8.10. Error curves for the bagging example of Figure 8.9. Shown is the test error of the original tree and bagged trees as a function of the number of bootstrap samples. The orange points correspond to the consensus vote, while the green points average the probabilities.

Boosting

- Powerful technique for combining multiple "base" classifiers to form a committee whose performance can be significantly better than any of the base classifiers
- AdaBoost (adaptive boosting) can give good results even if base classifier performance is only slightly better than random
- Hence base classifiers are known as weak learners
- Designed for classification, can be used for regression as well

Boosting

- Uniformly subsample with replacement
- Test on the training data and weight appropriately according to error
- Sequentially subsample with weights based on misclassification



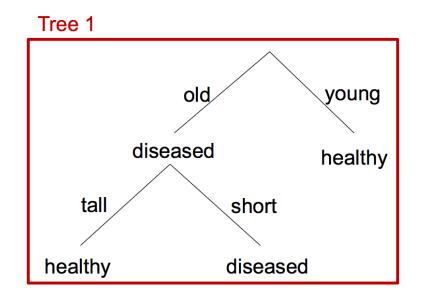
Bagging vs. Boosting Comparison

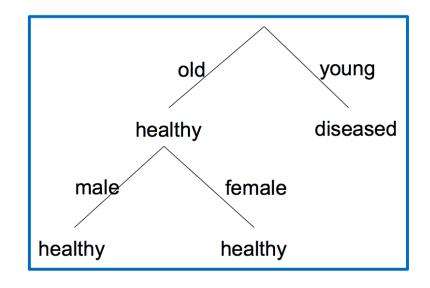
FIGURE 8.12. Data with two features and two classes, separated by a linear boundary. (Left panel:) Decision boundary estimated from bagging the decision rule from a single split, axis-oriented classifier. (Right panel:) Decision boundary from boosting the decision rule of the same classifier. The test error rates are 0.166, and 0.065, respectively. Boosting is described in Chapter 10.

Random Forest

- Bagging can be seen as a method to reduce variance of an estimated prediction function. It mostly helps high-variance classifiers.
- Comparatively, boosting build weak classifiers one-by-one, allowing the collection to evolve to the right direction.
- Random forest is a substantial modification to bagging
- Build a collection of **de-correlated** trees.
- Similar performance to boosting
- Simpler to train and tune compared to boosting

Random Forest (Intuition)

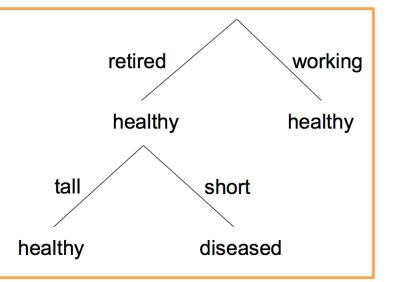




Tree 3

New sample: old, retired, male, short Tree predictions: diseased, healthy, diseased

Majority rule: diseased



Random Forest (Algorithm)

1. For b = 1 to B:

- (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
- (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x).$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}^B_1$.

Why Random Forest Works?

$$\operatorname{cov}(X,Y) = \mathbb{E}\left(\left[X - \mathbb{E}(X)
ight] \left[Y - \mathbb{E}(Y)
ight]
ight)$$

$$Var\left(\frac{1}{B}\sum_{i=1}^{B}T_{i}(c)\right) = \frac{1}{B^{2}}\sum_{i=1}^{B}\sum_{j=1}^{B}Cov(T_{i}(x), T_{j}(x))$$

$$= \frac{1}{B^{2}}\sum_{i=1}^{B}\left(\sum_{j\neq i}^{B}Cov(T_{i}(x), T_{j}(x)) + Var(T_{i}(x))\right)$$

$$= \frac{1}{B^{2}}\sum_{i=1}^{B}\left((B-1)\sigma^{2} \cdot \rho + \sigma^{2}\right)$$

$$= \frac{B(B-1)\rho\sigma^{2} + B\sigma^{2}}{B^{2}}$$

$$= \frac{B(B-1)\rho\sigma^{2}}{B} + \frac{\sigma^{2}}{B}$$

$$= \rho\sigma^{2} - \frac{\rho\sigma^{2}}{B} + \frac{\sigma^{2}}{B}$$

$$= \rho\sigma^{2} + \frac{\sigma^{2}}{B}$$
Decreases, if number of trees B increases (irrespective of ρ)

Bagging vs. Boosting vs. Random Forest Comparison

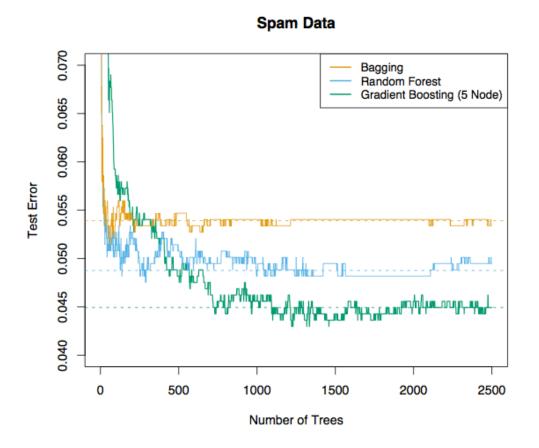
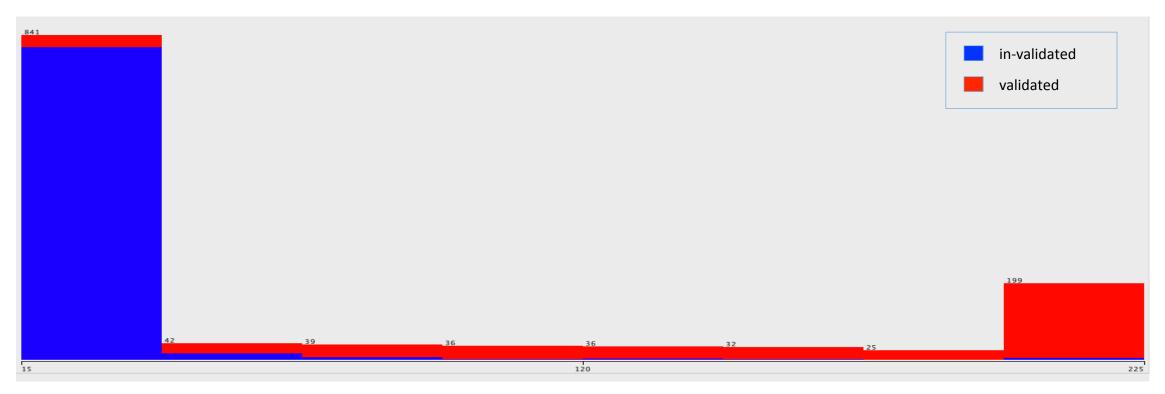


FIGURE 15.1. Bagging, random forest, and gradient boosting, applied to the spam data. For boosting, 5-node trees were used, and the number of trees were chosen by 10-fold cross-validation (2500 trees). Each "step" in the figure corresponds to a change in a single misclassification (in a test set of 1536).

Cancer Genomics Applications I: Somatic Score



Distribution of somatic scores

- Few somatic mutations below 15 (max 255).
 - 47 is the validation necessity
 - Taken as a minimum threshold

Cancer Genomics Applications II: Determining key mutations

- How do we determine key mutations?
- Look into evolution for answers
- "Nothing in Biology Makes Sense Except in the Light of Evolution"

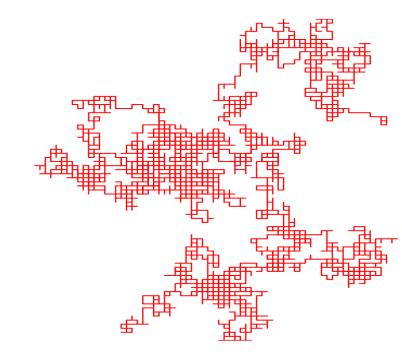
- Dobzhansky

Somatic Mutations

- All cancers arise because of somatically acquired changes
- Not all somatic variations will result in cancer the ones that result are called "drivers". "Passengers" are passive.
- Idea behind 'driver' and 'passenger' mutations is based on evolution
- Certain mutations are casually selected in the tumor micro-environment that would lead to increased survival/reproduction.
- Selection What does this mean ??*?#\$%\$%*&???!!!!

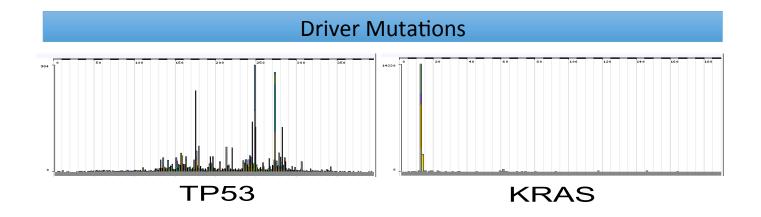
Non-selection

- Understanding selection requires understanding non-selection.
- Non-selection essentially stochastic process.
 - e.g. Random walk/Brownian motion etc.
- Does not mean uncertainty
 - if uncertainty means the probability of observing an event is not 1. e.g., <u>Drunkard's walk.</u>
- Expectation is zero at any instance of time.
- Genetic drift
 - Change in the allele frequency due to randomness.
- Driver mutations are not outcomes of genetic drift, but due to selection.



Natural Selection and Cancer

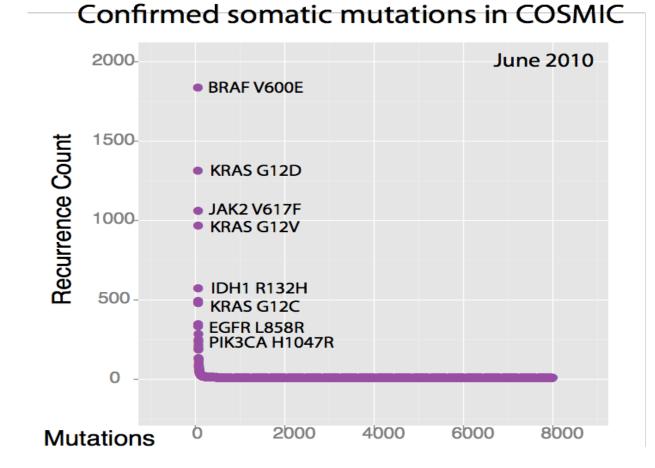
- Natural selection is a *non-random** process by which phenotypes become fixated in a population as a function of differential reproduction/survival
- Cells in pre-malignant and malignant state (tumors) evolve by selecting genes that favors tumor genesis



* As opposed to genetic drift, NS is deterministic and has direction.

Mutational Frequency

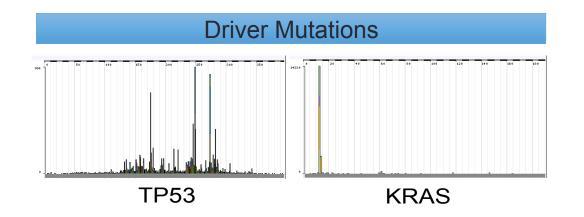
• Mutational frequency a defining criteria?



- Methods independent of frequency of occurrence are required to determine driver genes.
- Cancer-specific High-throughput Annotation of Somatic Mutations (CHASM)* is a machine learning algorithm designed to identify driver mutations.
- Based on random forest classifier

Natural Selection and Cancer

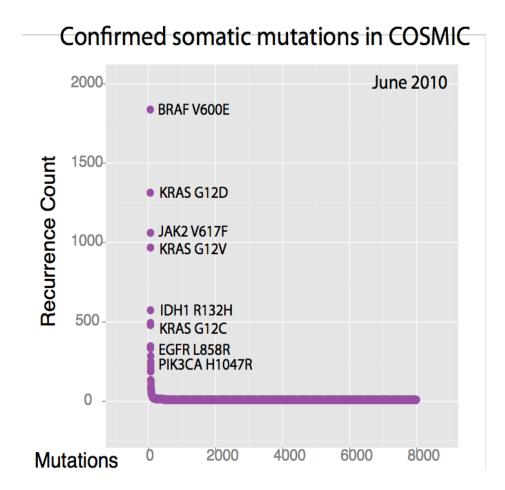
- Natural selection is a *non-random** process by which phenotypes become fixated in a population as a function of differential reproduction/survival
- Cells in pre-malignant and malignant state (tumors) evolve by selecting genes that favors tumor genesis



* As opposed to genetic drift, NS is deterministic and has direction.

Mutational Frequency

• Mutational frequency a defining criteria?

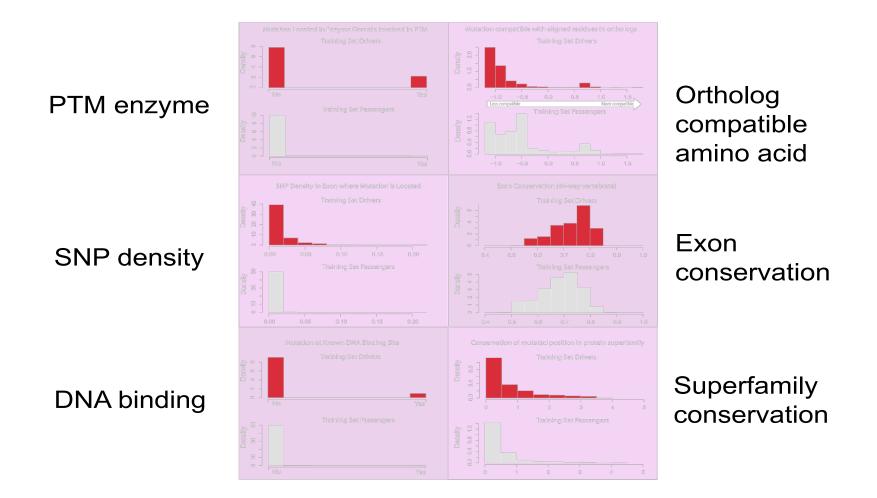


CHASM

- Methods independent of frequency of occurrence are required to determine driver genes.
- Cancer-specific High-throughput Annotation of Somatic Mutations (CHASM)* is a machine learning algorithm designed to identify driver mutations.
- Based on random forest classifier

CHASM Features Set

• For each mutation, 56 default features like,



CHASM Overview

- CHASM has a curated set of 2488 driver genes taken from COSMIC and other cancer datasets
- CHASM simulates mutations based on given contexts and calls them passenger mutations. These are mutations that occur by random chance alone

 C*pG
 CpG*
 TpC*
 G*pA
 A
 C
 G
 T

 ->A
 0.009
 0.227
 0.014
 0.031
 0
 0.043
 0.077
 0.028

 ->C
 0
 0.005
 0
 0.015
 0.012
 0
 0.021
 0.028

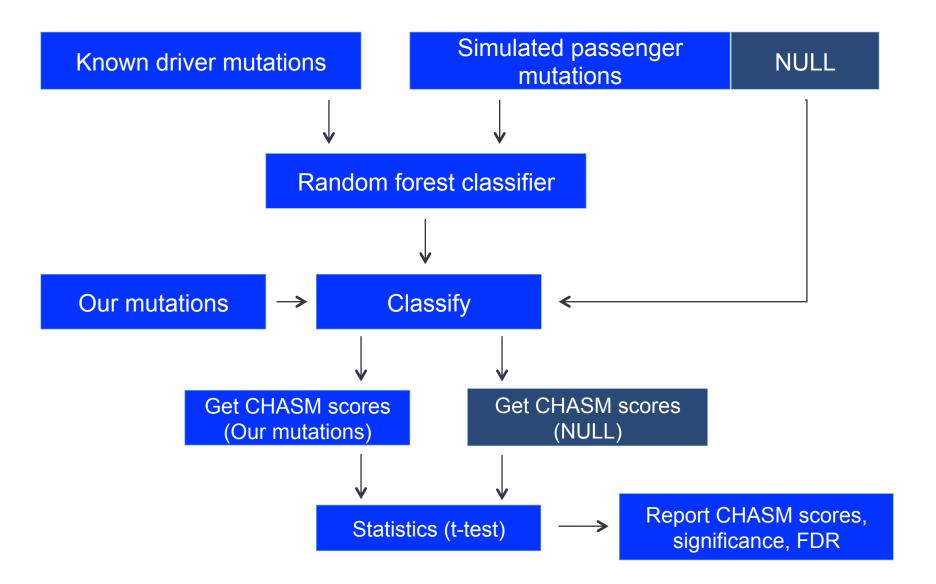
 ->G
 0.005
 0
 0.015
 0.012
 0
 0.021
 0.028

 ->G
 0.005
 0
 0.009
 0
 0.060
 0.029
 0
 0.015

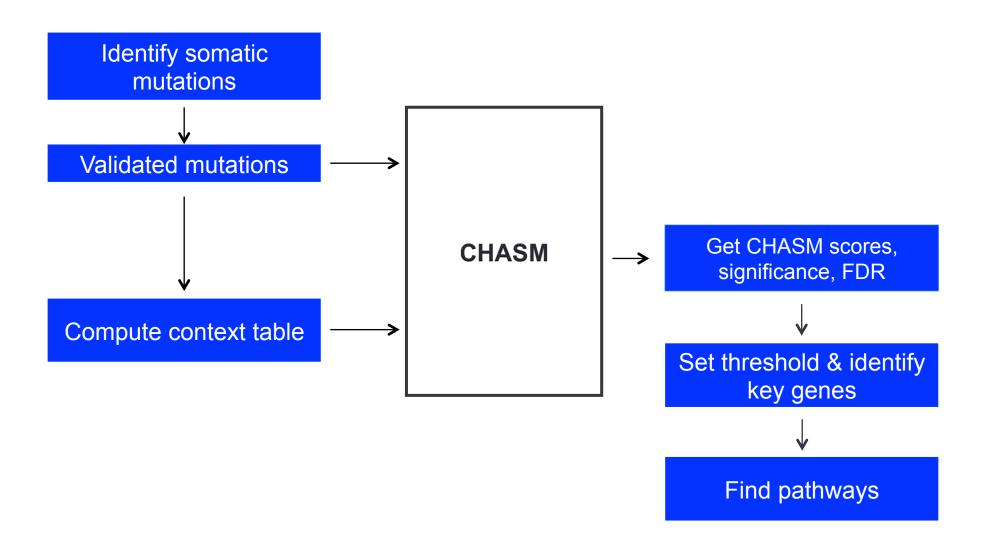
 ->T
 0.172
 0.003
 0.021
 0.023
 0.025
 0.074
 0.057
 0

• A portion of these passenger mutations are isolated to form a null distribution

CHASM Overview



CHASM Pipeline



Summary

- Decision Trees
 - Overview
 - Splitting nodes
 - Limitations
- Bagging/Bootstrap Aggregating and Boosting
 - How bagging reduces variance?
 - Boosting
- Random Forests
 - Overview
 - Why RF works?
- Cancer Genomics Application